Heart disease detection system

Author:

Wonderful Ntepa1

Affiliation:

1. DMI St. John the Baptist University

Abstract

This paper presents a comprehensive exploration into the utilization of machine learning (ML) techniques to revolutionize medical diagnostics, with a specific focus on enhancing the detection of heart disease. Recognizing the imperative need for early diagnosis to address the global prevalence of heart disease, this study delves into the development and application of advanced ML principles. The paper aims to construct a robust ML model capable of analyzing diverse patient data sets, including electronic health records and genetic information, to discern intricate patterns and correlations imperceptible to human clinicians. By leveraging a comprehensive dataset encompassing various patient profiles, the ML model is poised to significantly enhance the precision, speed, and efficiency of heart disease detection. The findings of this paper hold promise for fostering more effective intervention strategies and improving patient care outcomes in the realm of cardiovascular health.

Publisher

i-manager Publications

Reference16 articles.

1. Arya, A., & Mishra, P. K. (2023). A comprehensive review on monitoring and prediction techniques for heart disease using deep learning and IoT. International Research Journal of Modernization in Engineering Technology and Science, 5(6), 1233-1241.

2. Beyene, C., & Kamat, P. (2018). Survey on prediction and analysis the occurrence of heart disease using data mining techniques. International Journal of Pure and Applied Mathematics, 118(8), 165-174.

3. Bhat, R., Chawande, S., & Chadda, S. (2019). Prediction of test for heart disease diagnosis using artificial neural network. Indian Journal of Applied Research, 9(11), 48-50.

4. Predictive analytics to prevent and control chronic diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3