Optimizing the integration of photovoltaic and wind energy systems for enhanced efficiency

Author:

Nimain Charan Nayak1

Affiliation:

1. Misrimal Navajee Munoth Jain Engineering College

Abstract

This paper presents a novel integration scheme of solar Photovoltaic (PV) with a large-capacity Doubly Excited Induction Generator (DFIG)-based wind energy system. The proposed scheme leverages both the grid and rotor-side power converters of the DFIG to inject PV power into the grid, eliminating the need for a dedicated converter for PV power processing and offering a cost-effective PV-grid integration solution. The system effectively delivers a substantial amount of PV power to the grid when compared to an equivalent rating inverter used in conventional PV-grid systems. Moreover, the proposed scheme prevents circulating power during sub-synchronous operation in the presence of solar radiation, enhancing overall system efficiency. Additionally, the system's stability benefits from turbine inertia, allowing for higher PV penetration into the power grid. The intermittent complementary nature of solar PV and wind energy sources significantly improves the utilization of the converters. Furthermore, the proposed scheme minimally impacts Maximum Power Point Tracking (MPPT) for PV and wind sources, except in rare environmental glitches, which the PV power control algorithm is adept at handling. The study provides a comprehensive system model used to design the control strategy, supported by analysis, simulations, and experiments conducted on a laboratory prototype.

Publisher

i-manager Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3