Analysis of a crash on a vehicle system by adjusting appropriate input parameters to manage energy absorption capacity for enhancing passenger safety

Author:

Dhamone Sagar Parashuram1ORCID,Parashuram Sagar1ORCID

Affiliation:

1. Visvesvaraya Technological University Belagavi

Abstract

The aim of the research is to develop a front bumper system that absorbs maximum impact energy as compared to the current bumper available in the market, Bumper design is based on increasing the area of the crumping zone to slow down the collision and observe the impacts taking place at the time of jerks and reduces the percentage of damage. To develop the system, the number of load cases tested numerically in passive safety simulation has increased significantly in recent years. The variety of applications may be divided into three main topics: structural crashworthiness of the whole car, passenger protection, and crashworthiness of components. Present theories and practices. To absorb impact, the front bumper of the car uses a spring-loaded system that is installed between the bumper and the support for the chassis structure. This system is made of metal and serves as the bumper's structural foundation. A honeycomb structure is being added to the bumper as a composite material together with a layer of galvanized iron as it is being created in this manner, which increases strength while weighing less. This arrangement design is suitable for psychoacoustics, varying velocity explicit analysis is performed with the approach of finite element analysis, experimental testing is carried out for the validation of the value and advanced manufacturing methods are implemented with statistical results, and one of the cheapest systems is developed as compared to the current bumper systems.

Publisher

Research and Innovation Centre Pro-Akademia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3