Serotonin Discharge Regulation by Additional Neurotransmitters of Rat Hippocampus Associated With the Continence Central Circuit

Author:

Kim Jae Heon,Ahn Young Soo,Song Yun SeobORCID

Abstract

Purpose: The lower urinary tract is believed to be centrally regulated with the involvement of a range of neurotransmitters. The parasympathetic excitatory input to the urinary bladder is suppressed when the serotonergic system is activated, and thereby voiding is blocked. In healthy people, continence is usually underpinned by hippocampal formation (circuit 3). In order to advance knowledge of how serotoninergic neurons and additional nerve fibers were correlated, the purpose of the present work was to research how the discharge of serotonin from hippocampal slices was affected by different neurotransmitters in rat models.Methods: The adopted procedure involved administration of the central neurotransmitters acetylcholine, norepinephrine, dopamine, N-methyl-D-aspartate (NMDA), gamma-aminobutyric acid (GABA), glycine, and neuropeptide Y as well as monitoring of the alterations in the discharge of [3H]5-hydroxytryptamine (5-HT). Furthermore, to determine whether the effect of the neurotransmitters was influenced by interneuron, tetrodotoxin was also employed.Results: Acetylcholine (10-5M) did not alter [3H]5-HT discharge, whereas more 5-HT was discharged from the hippocampal slices of rats under stimulation by norepinephrine (10-5M) as well as dopamine (10-5M) and tetrodotoxin (10-6M) did not inhibit the discharge. By contrast, tetrodotoxin inhibited the discharge of [3H]5-HT that was exacerbated by NMDA (10-4M). Meanwhile, compared to control, GABA (10-5M), glycine (10-5M), or neuropeptide Y (10-6M) did not alter the [³H]5-HT discharge.Conclusions: From the research findings, it can be concluded that 5-HT discharge from rat hippocampus is enhanced by norepinephrine and dopamine through direct effect on the 5-HT neuronal terminal. By contrast, 5-HT discharge is intensified by NMDA by activating interneurons.

Funder

Soonchunhyang University

National Research Foundation of Korea

Ministry of Education, Science and Technology

Publisher

Korean Continence Society

Subject

Urology,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3