Quantification of Aging-Related Decreases in Sensory Innervation of the Bladder Trigone in Rats

Author:

Rijk Mathijs M. de,Peter SašaORCID,Wolf-Johnston AmandaORCID,Heesakkers JohnORCID,Koeveringe Gommert A. vanORCID,Birder Lori A.ORCID

Abstract

Purpose: The prevalence of lower urinary tract symptoms (LUTS), characterized by problems regarding storage and/or voiding of urine, is known to significantly increase with age. Effective communication between the lower urinary tract and the central nervous system (CNS) is essential for the optimal function of this system, and heavily relies on the efficient interaction between the bladder urothelium and the afferent nerve fibers situated in close proximity to the urothelium within the lamina propria.Methods: We aimed to quantify aging-related differences in the expression of calcitonin gene-related peptide (CGRP, an established marker for sensory nerve fibers) in the trigonal mucosal layers of young (3–4 months) and aged (25–30 months) rats. We evaluated trigonal tissue from 3 animals per age group. Tissue was serially sectioned at 10 μm and stained for CGRP. Images were taken along the full length of the tissue. For each image we computed the total CGRP-positive area (μm<sup>2</sup>) and the median value for each animal was used for further analysis.Results: Upon statistical analysis the aged rats show a significantly lower CGRP-positive area compared to young rats (P=0.0049). These results indicate that aging has a negative effect on the area of CGRP-positive signal in the trigone.Conclusions: The structural and functional integrity of the sensory web in the trigonum of rats is negatively affected by the aging process, potentially leading to impaired communication between the bladder urothelium the CNS. Consequently, these perturbations in the sensory system may contribute to the pathogenesis or exacerbation LUTS.

Funder

National Institutes of Health

National Information society Agency

Publisher

Korean Continence Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3