Abstract
Purpose: The goal of this study is to investigate the role of cyclin-dependent kinase 5 (Cdk5) in axonal regeneration in dorsal root ganglion (DRG) neurons after peripheral nerve injury.Methods: Crush injury was given on the sciatic nerve in rats. The DRG tissues were prepared 1, 3, and 7 days after injury and used for western blotting and immunofluorescence staining experiments. Primary DRG neurons were prepared and treated with Cdk5 inhibitor roscovitine or used for transfections with plasmid constructs. After immunofluorescence staining, neurite length of DRG neurons was analyzed and compared among experimental groups. In addition, roscovitine was injected into the DRG <i>in vivo</i>, and the sciatic nerve after injury was prepared and used for immunofluorescence staining to analyze axonal regeneration in nerve sections.Results: Levels of Cdk5 and p25 were increased in DRG neurons after sciatic nerve injury (SNI). Levels of S727-p-STAT3, but not Y705-p-STAT3, were increased in the DRG. Immunofluorescence staining revealed that Cdk5 and STAT3 proteins were mostly colocalized in DRG neurons and Y705-p-STAT3 signals were localized within the nucleus area of DRG neurons. A blockade of Cdk5 activity by roscovitine or by transfection with dominant negative Cdk5 (dn-Cdk5) and nonphosphorylatable forms of STAT3 (S727A or Y705F) resulted in significant reductions of the neurite outgrowth of cultured DRG neurons. <i>In vivo</i> administration of roscovitine into the DRG markedly attenuated distal elongation of regenerating axons in the sciatic nerve after injury.Conclusions: Our study demonstrated that Cdk5 activity induced from DRG neurons after SNI increased phosphorylation of STAT3. The activation of Cdk5-STAT3 pathway may be involved in promoting axonal regeneration in the peripheral nerve after injury.
Publisher
Korean Continence Society
Subject
Urology,Clinical Neurology,Neurology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献