Cdk5 Phosphorylation of STAT3 in Dorsal Root Ganglion Neurons Is Involved in Promoting Axonal Regeneration After Peripheral Nerve Injury

Author:

Hwang Jinyeon,Namgung UkORCID

Abstract

Purpose: The goal of this study is to investigate the role of cyclin-dependent kinase 5 (Cdk5) in axonal regeneration in dorsal root ganglion (DRG) neurons after peripheral nerve injury.Methods: Crush injury was given on the sciatic nerve in rats. The DRG tissues were prepared 1, 3, and 7 days after injury and used for western blotting and immunofluorescence staining experiments. Primary DRG neurons were prepared and treated with Cdk5 inhibitor roscovitine or used for transfections with plasmid constructs. After immunofluorescence staining, neurite length of DRG neurons was analyzed and compared among experimental groups. In addition, roscovitine was injected into the DRG <i>in vivo</i>, and the sciatic nerve after injury was prepared and used for immunofluorescence staining to analyze axonal regeneration in nerve sections.Results: Levels of Cdk5 and p25 were increased in DRG neurons after sciatic nerve injury (SNI). Levels of S727-p-STAT3, but not Y705-p-STAT3, were increased in the DRG. Immunofluorescence staining revealed that Cdk5 and STAT3 proteins were mostly colocalized in DRG neurons and Y705-p-STAT3 signals were localized within the nucleus area of DRG neurons. A blockade of Cdk5 activity by roscovitine or by transfection with dominant negative Cdk5 (dn-Cdk5) and nonphosphorylatable forms of STAT3 (S727A or Y705F) resulted in significant reductions of the neurite outgrowth of cultured DRG neurons. <i>In vivo</i> administration of roscovitine into the DRG markedly attenuated distal elongation of regenerating axons in the sciatic nerve after injury.Conclusions: Our study demonstrated that Cdk5 activity induced from DRG neurons after SNI increased phosphorylation of STAT3. The activation of Cdk5-STAT3 pathway may be involved in promoting axonal regeneration in the peripheral nerve after injury.

Funder

Daejeon University

Publisher

Korean Continence Society

Subject

Urology,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3