SYNTHESIS AND PROPERTIES OF CHALCONES BASED ON DEHYDROACETIC ACID

Author:

Tretyakova IrynaORCID,Chernii ViktorORCID,Fedosova NataliaORCID,Denisenko Iryna,Dovbii YanORCID,Kovalska VladyslavaORCID,Chernii SvitlanaORCID,Pekhnyo VasylORCID,Starukhin Alexandr

Abstract

The Knoevenagel condensation reaction between dehydracetic acid and aromatic aldehydes is described in this work. The reaction is carried out directly between dehydroacetic acid and aromatic aldehydes in the presence of organic bases. The optimal conditions for the Knoevenagel reaction based on dehydroacetic acid and various aldehydes were determined. Twenty-one chalcones with substituents of different nature were synthesized. The composition and structure of the obtained compounds were determined. All characteristic signals of chalcones are present in the 1H NMR spectra of the obtained compounds registered in CDCl3 and DMSO-d6: OH groups in the range of 18.7–16.5 ppm, CH proton – 6.3–5.9 ppm, and methyl group of the pyran cycle 2.3–2.2 ppm. The corresponding signals of methine protons and aryl substituents are also present in the spectra. The most sensitive to solvent changes is the OH proton bound by an intramolecular hydrogen bond to the carbonyl group of the pyran ring. Signals in DMSO are usually shifted by 0.1–1.0 ppm in a stronger field compared to CDCl3 for dehydroacetic acid and chalcones based on it. CH proton signals are shifted by approximately 0.3 ppm in a weaker field, and the signals of the protons of the methyl group are almost insensitive to the solvent. The optical properties of obtained compounds were investigated in DMF, MeOH, MeCN. The synthesized chalcones absorb light in the visible range 330–490 nm with molar extinction coefficients of 3.5–4.5. The solvatochromic effects for most of them are weak – the position of the maximum changes by less than 10 nm. The electron-donor substituents in the phenyl ring (-NMe2 and -NEt2) shift the absorption ma­ximum bathochromically by almost 100 nm compared to others in all investigated solvents.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3