FEATURES OF ZnO APPLICATION IN THE STRUCTURE OF HYDROGEN FUEL CELL

Author:

Ostroverkh AnnaORCID,Ostroverkh YevheniiORCID,Kovalenko LeonidORCID,Samelyuk Anatoly,Bezdorozhev OleksiiORCID,Vasylyev OleksandrORCID,Solonin Yurii

Abstract

The work is devoted to zinc oxide and the prospects of its use for the needs of hydrogen energy. The influence of zinc oxide on electrolyte materials for ceramic fuel cells is determined. The properties of ceramics based on 8YSZ were investigated by adding 0.5 wt.% nanopowder of zinc oxide according to the me­thod of the research of zinc oxide ceramics. The electrical conductivity of 8YSZ in an oxy­gen atmosphere shows a better conductivity characteristic, but 8YSZ-ZnO ceramics have better mechanical properties and higher reactivity in real fuel cell conditions. It was found that zinc oxide has a positive effect on the open voltage of SOFC in the temperature range from 320 °C to 600 °C. The maximum value of the open voltage for the electrolyte 8YSZ-ZnO was obtained at a temperature of 520 °C with a value of 1.02 V, in turn for the electrolyte of pure 8YSZ the maximum value was 0.92 V at a temperature of 600 °C. The small amount of data on the use of pure zinc oxide as an electrolyte opens up opportunities for thorough analysis and determination of optimal technological parameters that will accelerate the introduction of hydrogen energy technologies with operating tempe­ratures below 600 ºC. From a brief overview of existing zinc oxide-based materials in fuel cells, materials with mixed conductivity and low sintering temperatures are the most promising and effective for implementation in real systems. Data on the effect of sintering temperature on the porosity of ceramics with 8YSZ-ZnO and 8YSZ determined that the porosity of samples of both types decreases significantly with increasing sintering temperature of powders, but the addition of zinc oxide to 8YSZ-ZnO composite allows to obtain dense ceramics at temperatures below 100 °C than for pure 8YSZ. Regarding the strength of 8YSZ-ZnO ceramics, it increases with increasing sintering temperature and has higher values ​​relative to pure 8YSZ. Both porosity and strength change rapidly in the range of 1200–1300 °C and slowly in the range of 1300–1400 °C, due to the sintering temperature of ceramics made of pure zinc oxide 1100–1200 °C. Improving the sintering conditions of ceramics and mechanical properties reveal its advantage in the addition of zinc oxide.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3