Abstract
There are synthesized various types of polymethine dyes from trifluoromethylthiazolo(3,2-a)pyrimidinium and trifluoromethylpyrimido(2,1-b)benzthiazolium perchlorates various types of polymethine dyes were obtained – styryls, monomethinecyanines, symmetrical and asymmetrical carbocyanines, merocyanines. The absorption maxima and their intensities are determined for each dye, absorption characteristics curves and elemental analysis data for Carbon, Hydrogen and Sulfur are provided. As a result of the dyes absorption maxima analysis containing a tri-fluoromethyl group in the pyrimidine ring and synthesized in this reaserch with the absorption maxima of dyes without a trifluoromethyl group in the pyrimidine ring, the bathochromic effect of the trifluoromethyl group on the dyes absorption maxima was established. The phenyl in the fifth position of the thiazole ring causes a bathochromic shift of the dye absorption maximum. There are characteristics of the absorption curve. The α- and γ-derivatives of monocyanines have a significant difference. The curve is flat with one absorption maximum for α-derivatives.The curve is narrower and contains two absorption maxima for γ-derivatives. The absorption curves of merocyanines also contain two maxima. The results of elemental analysis for Carbon, Hydrogen and Sulfur are presented. The resulting polymethine dyes are easily synthesized from thiazolo(3,2-a)pyrimidinium and pyramido(2,3-b)benzthiazole in an acetic anhydride medium with product output at least 41%. The styrene product output are 53–93%. Synthesized dyes are crystallized from acetic anhydride. Symmetrical carbocyanines are crystallized from dimethylformamide.
Publisher
V.I. Vernadsky Institute of General and Inorganic Chemistry
Subject
Energy Engineering and Power Technology,Fuel Technology,Process Chemistry and Technology,Economic Geology,Fuel Technology
Reference7 articles.
1. Kropelnytska Yu. V. Polimetynovi barvnyky yak potentsiini sensybilizatory heterostruktur na osnovi tytan (IV) oksydu. 2017. (Doctoral dissertation, BDMU).
2. Vyshnevskyi S. Yu., Dmytruk I. M., Naumenko A. P., Briks Yu. L., Slominskyi, Yu. L. Osoblyvosti vzaiemodii polimetynovykh barvnykiv iz napivprovidnykovymy nanochastynkamy pry nyzkykh temperaturakh. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Seriia: Fizyko-matematychni nauky. 2013. 4: 217–222.
3. Shevchenko, Yu.O., Yu.M. Lopatkin, P.O. Kondratenko Zastosuvannia teoretyko-hrupovoho analizu dlia doslidzhennia fluorestsentsii polimetynovykh barvnykiv. Fizyka, elektronika, elektrotekhnika: materialy ta prohrama naukovo-tekhnichnoi konferentsii, m. Sumy, 5–9 liutoho 2018. 35.
4. Kobasa, I. M., Vorobets, M. M., Cema, O. V., & Kropelnytska, Yu. V. Novi svitlochutlyvi materialy na osnovi TiO2 i merotsianinovoho polimetynovoho barvnyka. Naukovyi visnyk Chernivetskoho universytetu. Khimiia. 2019. 8(18): 66–71.
5. Kostenko O. M., Dmitriieva S. Yu., Yarmoliuk S. M. Bilky ta tsianinovi barvnyky. 2. Zastosuvannia reaktsii piryliievykh barvnykiv z aminamy dlia kovalentnoho michennia aminokyslot i peptydiv. Biopolymers and Cell. 2001. 17(1): 80–84. doi: 10.7124/bc.0005A1