SYNTHESIS AND OPTICAL PROPERTIES OF NANOCOMPOSITES BASED ON LIQUID CRYSTAL WITH BIMETALLIC Au + Ag NANOPARTICLES OF ALLOY TYPE.

Author:

Mirnaya TatianaORCID,Yaremchuk GalinaORCID

Abstract

In this work, we have carried out a research which aimed to obtain complex nanoparticles of noble metals Au + Ag in the form of bimetallic alloys. Bimetallic nanoparticles were synthesized directly in a liquid-crystalline cadmium caprylate melt in an argon atmosphere in the temperature range of mesophase existence by the simultaneous chemical reduction of cations of gold (Au3+) and silver (Ag+) from their compounds, tetrachloroaurate acid (H[AuCl4]×3Н2О) and silver  nitrate AgNO3, respectively.   The effect of synthesis duration (3 and 5 hours) on the spectral behavior of binary nanoparticles have been studied. It has been shown that when the synthesis duration is 3 h, mainly homogeneous bimetallic alloys are obtained, and when it is 5 h, both homogeneous and gradient alloys can be obtained. The absorption spectra of homogeneous alloys are characterized by the presence of one surface plasmon resonance (SPR) peak, which occupies an intermediate position relative to the SPR peaks for monometallic nanoparticles, i.e. between 425 and 560 nm. When forming heterogeneous alloys, which are formed in the molar ratio range where the amount of silver ions predominates, the absorption spectra exhibit two SPR peaks which relate to nanoparticles with different metallic silver content. The formation of metallic nanoparticles containing different metals may be due both to the different mobility of noble metals ions in the liquid crystal matrix and to the different rate of rearrangement of metals in the new formed heteronanoparticle.   It has been found by electron spectroscopy and transmission electron microscopy that the nanoparticles in this matrix have mostly a spherical shape with a mean diameter of 15 nm. The possibility of the fine control of the position of SPR peak of bimetallic nanoparticles in a liquid crystal matrix over a wide optical range   of  422–580 nm is shown.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3