OBTAINING PARTIALLY UNZIPPED CARBON NANOTUBES FOR OXYGEN ELECTRODES

Author:

Danilov MichailORCID,Rusetskyi IhorORCID,Dovbeshko GalinaORCID,Nikolenko AndriiORCID,Fomanyuk SergeyORCID,Kolbasov GennadiiORCID

Abstract

Various methods for unzipping carbon nanotubes are described, which differ only in the method of acting on multi-walled carbon nanotubes which leads to obtain a partial unzipped carbon nanotubes or the creation of a defective hybrid structure in carbon nanotubes. By electrochemical anodic oxidation in 80 % sulfuric acid of multi-walled carbon nanotubes synthesized partially unzipped nanotubes and shows the results of the study. Using the methods of X-ray phase analysis, electron microscopy, and Raman spectra, it has been established that, as a result of electrochemical anodic oxidation, partially unzipped multi-walled carbon nanotubes are obtained. Two-layer oxygen electrodes were made, where synthesized materials were used as an active layer. Studies of the electrocatalytic characteristics of oxygen electrodes from partially unzipped multi-walled carbon nanotubes were carried out in a mock up of fuel cell with alkaline electrolyte. It is established that the degree of unzipping of multi-walled carbon nanotubes depends on the time of electrochemical oxidation. It has been suggested that it is possible to control the process of synthesis of partially unzipped nanotubes. It has been established that one of the methods for estimating the degree of unzipping of multi-walled carbon nanotubes can be studies the electrochemical characteristics of oxygen electrodes based on these materials. Electrochemical investigation has established that the obtained samples of partially unzipped multi-walled carbon nanotubes are promising materials as catalysts carrier for oxygen electrodes of fuel cells. The developed method synthesis of partially unzipped multi-walled carbon nanotubes allows obtaining electrode materials for chemical current sources. Oxygen electrodes, based on such electrochemically produced materials, were stable for six months at a discharge current density of 200 mA/cm2. Partially unzipped multi-walled carbon nanotubes are promising catalyst carrier for electrodes of chemical current sources, as well as a material for hybrid nanocomposites with predetermined characteristics.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3