HYDROLYSIS OF RHENIUM(III) CLUSTER COMPOUNDS

Author:

Golichenko AlexanderORCID,Shtemenko AlexanderORCID

Abstract

Study of hydrolysis of cis-tetrachlorodi-m-carboxylates of dirhenium (III) was carried out due to the electronic adsorption and IR spectroscopy and pHmeter. As a result, itwas shown that the hydrolysis is a multistage process which can be attributed to the reactions of the pseudo-first order. It is also shown that the electronic absorption spectroscopy (EAS) is a reliable method of investigation to study the hydrolysis of rhenium (III) complex compounds. This conclusion is based on the fact that in the systems with halide and carboxylic ligands, each of the five structural types can be clearly identified by the EAS in the region of both d–d* electron transition and charge transfer transition of L*Hal ®Re type. It is shown that with the increase in the length of the alkyl group and in its branching, the hydrolysis rate decreases, as a result of a change in the positive inductive effect of these groups and, consequently, an increase in the strengthening of quadruple Re–Re bond. In addition, with the help of the EAS, a transition of the chloride ligands to OHgroups can be observed. As a result of the study, a hydrolysis route, which initially leds to the gradual replacement of the chloride ligands of a complex compound with OH groups, and subsequently to the conversion of Re(III) compounds into the derivative of Re(IV) was proposed. The dependence of resistance to hydrolysis on the structure of the complex compound, the temperature and pH was determined. It allowed to predict the stability of the investigated compounds while their usage as biologically active substances and reagents in the synthesis of new compounds. The obtained results allow us to presence of anticancer, cytostabilizing and other biological activities is the coordination of Re(III) complex compounds with the components of biomolecules (proteins, DNA).

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3