Synthesis of condensed cobalt (II)-zinc phosphate with the concrete anionic composition

Author:

Kochkodan OlhaORCID,Antraptseva NadiyaORCID,Kozachuk Tetiana

Abstract

Сondensed cobalt(II)-zinc phosphates with the concrete anionic composition (with а linear structure of anion with = 2–8 of the general formula (Co1-хZnх)(n+2)2PnO3n+1, 0<х<1.00, and a cyclic with = 4 – (Со1-xZnx)2P4O12, 0<x<1.0) were synthesized by heat treatment in the isothermal conditions of crystallohydrates  of  composition  Со1-хZnх(H2PO4)2·2H2O (0<x<1.00). The heat treatment of Со1-хZnх(H2PO4)2·2H2O (0<x<1.00) was carried out in the air in the range of 100–350 °C (± 5 °). The sample was maintained at a predetermined temperature for 0.5, 1.5, 3.0, 5.0 and 7.0 hours. Heat treatment products were identified using a set of analytical methods: chemical, X-ray, IR spectroscopy, quantitative chromatography on paper. It has been determined that the formation of condensed phosphates in products of heat treatment Со1-хZnх(H2PO4)2·2H2O (0<x<1.00) at 100 °C for 0.5–3.0 h does not occur. The processes of anionic condensation begin under the heat treatment for 5.0–7.0 h at 100 °C and deepen for further temperature rise. With the increase in the duration of heat treatment at 150 °C to 3.0–7.0 h, the formation of condensed phosphates with a linear structure of anion with a degree of polycondensation = 2–5 of the general formula (Со1-хZnх)(n+2)2PnO3n+1. is recorded. The degree of conversion of monophosphate anion to polyphosphate is 61-73%, respectively. Similar changes in the composition of heat treatment products are realized with the destruction of the structure and complete amorphization of the solid phase. The formation of a new crystalline lattice is recorded at 225 °C. The sample, which lasts 0.5 h, is a crystalline phase identified as Со1-хZnхH2P2О7 with an admixture of Со1-хZnхP2О7. The maximum amount of diphosphate (52.9 % of the total content of P2O5) is formed during the firing of Со1-хZnх(H2PO4)2·2H2O for 1.5 h at 225 °C. The amount of diphosphate is reduced by almost 2 times during heat treatment for 7.0 hours. Similar changes in the composition of linear condensed phosphates are observed at 275 °C: with the increase in the duration of heat treatment the number of low-molecular phosphates with = 2–4 decreases, the high-molecular with = 5–8 of the general formula (Со1-хZnх)(n+2)2PnO3n+1 increases . Fosted condensed phosphate with a cyclic structure of the anion with = 4 – cyclotetraphosphate of the composition (Со1-хZnх)2Р4O12 . It increases the temperature to 350 °C and becomes the only heat treatment product. Quantitative dependences of the content of condensed phosphates with different anion structure and phosphate acids, which released as intermediate products, on the temperature regime and roasting duration were established. The influence of cation nature on the conditions of synthesis and quantitative composition of the condensed phosphates of cobalt(II)-zinc with concrete anionic composition  (with а linear structure of anion with = 2–8 of the general formula (Co1-хZnх)(n+2)2PnO3n+1, 0<х<1.00, and a cyclic with = 4 – (Со1-xZnx)2P4O12, 0<x<1.0) is shown.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Reference11 articles.

1. Acton A.Q., Phosphates – advances in research and application. (Atlanta, Georgia: Scholarly Editions), 2013.

2. Robertson L. Etude de pigments thermochromes autour du cobalt II. Material chemistry. (Universite Sciences et Technologies, Bordeaux I, 2010).

3. Konstant Z.A., Dindune A.P. Bivalent metal phosphates. (Riga : Zinatne, 1987). [ in Russian].

4. Trojan M. Studi of thermal preparation and stability of binary MnII-MgII tetrametaphosphates by means of DTA. Thermochim. Acta. 1989. 143: 131.

5. Shchegrov L., Antraptseva N., Lopilevich V. Chemistry of double and individual phosphates and polyphosphates of Divalent Metals. Phosphorus, Sulfur, and Silicon. 1990. 51/52: 149.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3