Abstract
Este artículo aborda la aplicación de técnicas de Aprendizaje Automático o Machine Learning en la geoingeniería y geociencia, destacando su relevancia en la predicción y comprensión de fenómenos naturales. A pesar de prescindir de leyes físicas explícitas, los modelos de ML ofrecen flexibilidad para adaptarse y descubrir patrones complejos. En particular, se resalta la capacidad del aprendizaje automático para mejorar la precisión y eficiencia en la predicción de la susceptibilidad a deslizamientos de tierra, con enfoques como el aprendizaje supervisado y no supervisado. Se menciona la importancia de comprender por qué un modelo clasifica ciertas clases, ofreciendo herramientas explicables que permitan alinear resultados con la comprensión física de los procesos geológicos. Además, se exploran aplicaciones cruciales de ML en la ingeniería geotécnica, con modelos basados en algoritmos como máquinas de vectores de soporte, redes neuronales artificiales y clasificadores de Bayes. Se destaca la necesidad de investigar el acoplamiento de modelos basados en la física y en datos de IA para una comprensión más completa y predicciones confiables. La integración de técnicas de ML en la geoingeniería emerge como una estrategia clave para abordar los desafíos climáticos y antropogénicos actuales, ofreciendo nuevas perspectivas en la investigación de deslizamientos de tierra y otros riesgos geológicos. Este artículo forma parte de la investigación realizada en el marco de la Maestría en Ingeniería Ambiental, donde se busca explorar el potencial del Aprendizaje Automático para la gestión de riesgos geológicos
Reference34 articles.
1. Akinci, H., & Zeybek, M. (2021). Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Natural Hazards, 108(2). https://doi.org/10.1007/s11069-021-04743-4
2. Buranyi, S. (2017). Rise of the racist robots - how AI is learning all our worst impulses. The Guardian, August 8.
3. Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences, 81. https://doi.org/10.1016/j.cageo.2015.04.007
4. Götz, M., Richerzhagen, M., Bodenstein, C., Cavallaro, G., Glock, P., Riedel, M., & Benediktsson, J. A. (2015). On scalable data mining techniques for earth science. Procedia Computer Science, 51(1). https://doi.org/10.1016/j.procs.2015.05.494
5. Hinestroza, D., & Cárdenas, J. (2018). El Machine Learning a través de los tiempos, y los aportes a la humanidad.