Classification of suspensions over cartesian products of orientation-reversing diffeomorphisms of a circle

Author:

Zinina Svetlana Kh.1ORCID,Pochinka Pavel I.2ORCID

Affiliation:

1. National Research Mordovia State University

2. National Research University «Higher School of Economics»

Abstract

This paper introduces class G containing Cartesian products of orientation-changing rough transformations of the circle and studies their dynamics. As it is known from the paper of A. G. Maier non-wandering set of orientation-changing diffeomorphism of the circle consists of 2q periodic points, where q is some natural number. So Cartesian products of two such diffeomorphisms has 4q1q2 periodic points where q1 corresponds to the first transformation and q2 corresponds to the second one. The authors describe all possible types of the set of periodic points, which contains 2q1q2 saddle points, q1q2 sinks, and q1q2 sources; 4 points from mentioned 4q1q2 periodic ones are fixed, and the remaining 4q1q2−4 points have period 2. In the theory of smooth dynamical systems, a very useful result is that, given a diffeomorphism f of a manifold, one can construct a flow on a manifold with dimension one greater; this flow is called the suspension over f. The authors introduce the concept of suspension over diffeomorphisms of class G, describe all possible types of suspension orbits and the number of these orbits. Besides that, the authors prove a theorem on the topology of the manifold on which the suspension is given. Namely, the carrier manifold of the flows under consideration is homeomorphic to the closed 3-manifold T2×[0,1]/φ, where φ:T2→T2. The main result of the paper says that suspensions over diffeomorphisms of the class G are topologically equivalent if and only if corresponding diffeomorphisms are topologically conjugate. The idea of the proof is to show that the topological equivalence of the suspensions ϕt and ϕ′t implies the topological conjugacy of ϕ and ϕ′.

Publisher

National Research Mordovia State University MRSU

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Superstructures over Cartesian products of orientation-preserving rough circle transformations;Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3