Fast converging Chernoff approximations to the solution of heat equation with variable coefficient of thermal conductivity

Author:

Vedenin Aleksandr V.1ORCID

Affiliation:

1. National Research University «Higher School of Economics»

Abstract

This paper is devoted to a new method for constructing approximations to the solution of a parabolic partial differential equation. The Cauchy problem for the heat equation on a straight line with a variable heat conduction coefficient is considered. In this paper, a sequence of functions is constructed that converges to the solution of the Cauchy problem uniformly in the spatial variable and locally uniformly in time. The functions that make up the sequence are explicitly expressed in terms of the initial condition and the thermal conductivity coefficient, i.e. through functions that play the role of parameters. When constructing functions that converge to the solution, ideas and methods of functional analysis are used, namely, Chernoff's theorem on approximation of operator semigroups, which is why the constructed functions are called Chernoff approximations. In most previously published papers, the error (i. e., the norm of the difference between the exact solution and the Chernoff approximation with number n) does not exceed const/n. Therefore, approximations, when using which the error decreases to zero faster than const/n, we call fast convergent. This is exactly what the approximations constructed in this work are, as follows from the recently proved Galkin-Remizov theorem. Key formulas, explicit forms of constructed approximations, and proof schemes are given in the paper. The results obtained in this paper point the way to the construction of fast converging Chernoff approximations for a wider class of equations.

Publisher

National Research Mordovia State University MRSU

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3