Optimal with respect to accuracy methods for evaluating hypersingular integrals

Author:

Boykov Ilya V.1ORCID,Boykova Alla I.1ORCID

Affiliation:

1. Penza State University

Abstract

In this paper we constructed optimal with respect to order quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions Ωur,γ(Ω,M), Ω¯ur,γ(Ω,M), Ω=[−1,1]l, l=1,2,…,M=Const, and γ is a real positive number. The functions that belong to classes Ωur,γ(Ω,M) and Ω¯ur,γ(Ω,M) have bounded derivatives up to the rth order in domain Ω and derivatives up to the sth order (s=r+⌈γ⌉) in domain Ω∖Γ, Γ=∂Ω. Moduli of derivatives of the vth order (r<v≤s) are power functions of d(x,Γ)−1(1+|lnd(x,Γ)|), where d(x,Γ) is a distance between point x and Γ. The interest in these classes of functions is due to the fact that solutions of singular and hypersingular integral equations are their members. Moreover various physical fields, in particular gravitational and electromagnetic fields belong to these classes as well. We give definitions of optimal with respect to accuracy methods for solving hypersingular integrals. We constructed optimal with respect to order of accuracy quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions Ωur,γ(Ω,M) and Ω¯ur,γ(Ω,M).

Publisher

National Research Mordovia State University MRSU

Reference40 articles.

1. A. I. Neckrasov, Wave theory in unsteady flow, Moscow. USSR Science Academy Publ., 1947 (In Russ.).

2. R. Bisplinghoff, H. Ashley, R. Halfman, Aeroelasticity, Inostrannaya Literatura Publ., Moscow, 1958 (In Russ.), 283 p.

3. H. Ashlay, M. Landahl, Aerodynamics of wings and bodies, Mashinostroyeniye Publ., Moscow, 1969 (In Russ.), 129 p.

4. G. M. Vainikko, L. N. Lifanov, I. K. Poltavsky, Numerical methods in hypersingular integral equarions and their applications, Yanus-K,, Moscow, 2001 (In Russ.), 508 p.

5. Z. T. Nazarcyk, Numerical study of diffracion on cylynder structures, Naukova dumka Publ., Kiev, 1989 (In Russ.), 256 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3