On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems

Author:

Kostromina Olga S.1ORCID

Affiliation:

1. National Research Lobachevsky State University of Nizhny Novgorod

Abstract

The effect of multi-frequency quasi-periodic perturbations on systems close to twodimensional nonlinear Hamiltonian ones is studied. It is assumed that the corresponding perturbed autonomous system has a double limit cycle. Analysis of the Poincar´e–Pontryagin function constructed for the autonomous system makes it possible to establish the presence of such a cycle. When the condition of commensurability of the natural frequency of the corresponding unperturbed Hamiltonian system with the frequencies of the quasi-periodic perturbation is fulfilled, the unperturbed level becomes resonant. Resonant structures essentially depend on whether the selected resonance levels coincide with the levels that generate limit cycles in the autonomous system. An averaged system is obtained that describes the topology of the neighborhoods of resonance levels. Possible phase portraits of the averaged system are established near the bifurcation case, when the resonance level coincides with the level in whose neighborhood the corresponding autonomous system has a double limit cycle. To illustrate the results obtained, the results of a theoretical study and of a numerical calculation are presented for a specific pendulum-type equation under two-frequency quasi-periodic perturbations.

Publisher

National Research Mordovia State University MRSU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3