The Multiplication Method with Scaling the Result for High-Precision Residue Positional Interval Logarithmic Computations

Author:

Korzhavina Anastasia S.1ORCID,Knyazkov Vladimir S.2ORCID

Affiliation:

1. Vyatka State University

2. Penza State University

Abstract

Introduction. The solution of the simulation problems critical to rounding errors, including the problems of computational mathematics, mathematical physics, optimal control, biochemistry, quantum mechanics, mathematical programming and cryptography, requires the accuracy from 100 to 1 000 decimal digits and more. The main lack of high-precision software libraries is a significant decrease of the speed-in-action, unacceptable for practical problems, in particular, when performing multiplication. A way to increase computation performance over very long numbers is using the residue number system. In this work, we discuss a new fast multiplication method with scaling the result using original hybrid residue positional interval logarithmic floating-point number representation. Materials and Methods. The new way of the organizing numerical information is a residue positional interval logarithmic number representation in which the mantissa is presented in the residue number system, and information on an absolute value (the characteristic) in the interval logarithmic number system that makes it possible to accelerate performance of comparison and scaling is developed to increase the speed of calculations; to compare modular numbers, the provisions of interval analysis are used; to scale modular numbers, the properties of the logarithmic number system and approximate interval calculations using the Chinese reminder theorem are used. Results. A new fast multiplication method of floating-point residue-represented numbers is developed and patented; the authors evaluated the developed method speed-in action, compared the developed method with classical and pipelined multiplication methods of long numbers. Discussion and Conclusion. The developed method is 2.4–4.0 times faster than the pipelined multiplication method, and is 6.4–12.9 times faster than classical multiplication methods.

Publisher

National Research Mordovia State University MRSU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3