Features of Calculating Kinematic and Roughness Parameters at Abrasive Finishing of Shut-Off Surfaces of Gate Valve Bodies Connecting Pipes

Author:

Skryabin Vladimir A.1ORCID

Affiliation:

1. Penza State University

Abstract

Introduction. The author defines main provisions for peculiarities of the kinematics of plant lapping in the process of finishing shut-off elements of the valves, as well as methods for determination of operating parameters and values of roughness in the process of abrasive finishing of sealing surfaces of valves. Materials and Methods. The kinematic scheme of grinding machines was developed to determine the angular velocity of rotation of an instrumental disc and lapping machine. Based on the developed kinematic scheme, we obtained analytical expressions to determine the capacity of the machine’s drive motor and cutting elements, as well as the angular and linear speeds of rotation of tool drive and laps. There were also developed trajectory traces of grid points of the lapping tool at its movement along with the treated surface details of pipe fittings. Results. There are given examples of calculation of kinematic parameters and roughness of the treated sealing surface of gate valves with the diameter DN = 100 according to established analytical dependencies for rough and finish lapping. The coordinates of the moving tools were calculated with visualization of trajectory points using special software Lazarus. The coordinates were calculated and the trace of the moving point tool was built. The specific space which characterizes the capacity of the sealing surfaces was calculated. Discussion and Conclusion. Calculations allowed us to determine how to place the lapping tool relative to the machine’s sealing surface for optimization of the treatment process. Preliminary calculations showed that the area of lapping tool’s contact with the workpiece and the optimum angle of contact would change slightly within the relative probability of error of 5% and 10%.

Publisher

National Research Mordovia State University MRSU

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3