Affiliation:
1. South Ural State Agricultural University
Abstract
Introduction. The article deals with the conditions for growing greenhouse plants. Supplementary lighting supports the process of plant photosynthesis and the microclimate in the greenhouse. The authors suggest the ways to reduce energy consumption in greenhouses by controlling the microclimate and process of supplementary lighting in greenhouses.
Materials and Methods. Special lighting and temperature are required for growing greenhouse plants. A method of efficient plant growing is light and temperature control. The development of a control algorithm requires the mathematical models that relate the process of photosynthesis to the microclimate parameters. There are given the mathematical models based on the experimental data.
Results. The control system and algorithm to control plant-growing conditions have been developed to maintain the greenhouse microclimate. LED lamps are used to control the lighting process. The authors present the developed block diagram of the control system, which contains four channels responsible for the main energy-intensive microclimate factors. The description of the algorithm of the greenhouse light-temperature control is given.
Discussion and Conclusion. In conclusion, the need to maintain the greenhouse microclimate and supplementary lighting with the different radiation spectrum for the efficient cultivation of greenhouse plants is shown. The developed structure and control algorithm for the supplementary plant lighting process and greenhouse illumination through using LED lamps help reduce energy consumption.
Publisher
National Research Mordovia State University MRSU
Reference20 articles.
1. Guzhov S., Polishchuk A., Turkin A. Concept of Use of the LED Luminaires Along with the Traditional Light Sources. Sovremennye tekhnologii avtomatizatsii = Contemporary Technologies in Automation. 2008; (1):14-18. Available at: https://www.cta.ru/cms/f/368162.pdf (accessed 20.01.2021). (In Russ.)
2. Hogewoning S.W., Trouwborst G., Maljaars H., et al. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. Journal of Experimental Botany. 2010; 61(11):3107-3117. (In Eng.) DOI: https://doi.org/10.1093/jxb/erq132
3. Dong C., Fu Y., Liu G., et al. Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations. Journal of Agronomy and Crop Science. 2014; 200(3):219-230. (In Eng.) DOI: https://doi.org/10.1111/jac.12059
4. Hanyu H., Shoji K. Acceleration of Growth in Spinach by Short-Term Exposure to Red and Blue Light at the Beginning and at the End of the Daily Dark Period. In: IV International ISHS Symposium on Artificial Lighting, ISHS Acta Horticulturae. 2002; 580:145-150. (In Eng.) DOI: https://doi.org/10.17660/ActaHortic.2002.580.17
5. Kondratieva N.P., Filatov D.A., Terentiev P.V., et al. Comparative Assessment of Sodium and LED Greenhouse Irradiators Main Characteristics. Selskokhozyaystvennye mashiny i tekhnologii = Agricultural Machinery and Technologies. 2020; 14(1):50-54. (In Russ.) DOI: https://doi.org/10.22314/2073-7599-2020-14-1-50-54