Light and Temperature Control for Greenhouse Plant Growth

Author:

Sheryazov Saken K.1ORCID,Popova Svetlana A.1ORCID

Affiliation:

1. South Ural State Agricultural University

Abstract

Introduction. The article deals with the conditions for growing greenhouse plants. Supplementary lighting supports the process of plant photosynthesis and the microclimate in the greenhouse. The authors suggest the ways to reduce energy consumption in greenhouses by controlling the microclimate and process of supplementary lighting in greenhouses. Materials and Methods. Special lighting and temperature are required for growing greenhouse plants. A method of efficient plant growing is light and temperature control. The development of a control algorithm requires the mathematical models that relate the process of photosynthesis to the microclimate parameters. There are given the mathematical models based on the experimental data. Results. The control system and algorithm to control plant-growing conditions have been developed to maintain the greenhouse microclimate. LED lamps are used to control the lighting process. The authors present the developed block diagram of the control system, which contains four channels responsible for the main energy-intensive microclimate factors. The description of the algorithm of the greenhouse light-temperature control is given. Discussion and Conclusion. In conclusion, the need to maintain the greenhouse microclimate and supplementary lighting with the different radiation spectrum for the efficient cultivation of greenhouse plants is shown. The developed structure and control algorithm for the supplementary plant lighting process and greenhouse illumination through using LED lamps help reduce energy consumption.

Publisher

National Research Mordovia State University MRSU

Reference20 articles.

1. Guzhov S., Polishchuk A., Turkin A. Concept of Use of the LED Luminaires Along with the Traditional Light Sources. Sovremennye tekhnologii avtomatizatsii = Contemporary Technologies in Automation. 2008; (1):14-18. Available at: https://www.cta.ru/cms/f/368162.pdf (accessed 20.01.2021). (In Russ.)

2. Hogewoning S.W., Trouwborst G., Maljaars H., et al. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. Journal of Experimental Botany. 2010; 61(11):3107-3117. (In Eng.) DOI: https://doi.org/10.1093/jxb/erq132

3. Dong C., Fu Y., Liu G., et al. Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations. Journal of Agronomy and Crop Science. 2014; 200(3):219-230. (In Eng.) DOI: https://doi.org/10.1111/jac.12059

4. Hanyu H., Shoji K. Acceleration of Growth in Spinach by Short-Term Exposure to Red and Blue Light at the Beginning and at the End of the Daily Dark Period. In: IV International ISHS Symposium on Artificial Lighting, ISHS Acta Horticulturae. 2002; 580:145-150. (In Eng.) DOI: https://doi.org/10.17660/ActaHortic.2002.580.17

5. Kondratieva N.P., Filatov D.A., Terentiev P.V., et al. Comparative Assessment of Sodium and LED Greenhouse Irradiators Main Characteristics. Selskokhozyaystvennye mashiny i tekhnologii = Agricultural Machinery and Technologies. 2020; 14(1):50-54. (In Russ.) DOI: https://doi.org/10.22314/2073-7599-2020-14-1-50-54

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3