Scientific and Technical Basis for the Development of an Induction Heating Unit for Milk Pasteurization

Author:

Neverov Evgeny N.1ORCID,Vladimirov Alexander A.2ORCID,Korotkih Pavel S.2ORCID,Nikolaeva Elena V.2ORCID,Porokhnov Andrey N.2ORCID

Affiliation:

1. Institute of Engineering Technologies of Kemerovo State University

2. Kemerovo State University

Abstract

Introduction. Induction heating is a preferred heating technique for industrial, medical and consumer systems, because it has a number of advantages over traditional heat transfer methods. The advantages include energy efficiency, heating rate, safety of operation, cleanliness of the process, low metal consumption, simple design, and precise control of the temperature of the heated raw materials. An induction heating unit is especially important for farms involved in processing of milk and producing milk-based products. Aim of the Study. The study is aimed at developing a prototype unit for long-term pasteurization of milk using a container heated by induction currents and at selecting optimal operating conditions for the developed prototype unit. Materials and Methods.There was used 3D modeling in the KOMPAS-3D computeraided design system to develop the main components of a milk pasteurization prototype unit with induction heating. The container for raw materials, stirrer and lid are made of stainless steel AISI 304 and AISI 430. The inductor is a frame made of polymer material with a litz wire arranged in a spiral manner. The body of the prototype unit is made of aluminum composite material. The developing and debugging of the electronic circuit of the prototype unit power part was carried out with the use of the design program Proteus 7.10. The microcontroller Mega 2560 was used to make the power part of the electromagnetic induction generation unit. The controlled temperature was monitored by using the waterproof temperature sensor DS18B20. A thermal imager was used to visualize the propagation of the thermal field over the surface of the container walls. Results. The structure diagram of the developed prototype unit with induction heating for long-term pasteurization of milk is presented. The article gives grounds to the use of the necessary elements and actuators in the unit for pasteurization of milk in a container heated by induction currents. There are presented a diagram of the developed power part for the prototype unit and the results of testing it when heating containers made of various materials. An algorithm has been developed to control the operation and PID regulation of the milk pasteurization in an experimental unit with the use the Raspberry Pi microcomputer. The graphs of transient processes when changing the coefficients of PID temperature control are presented. Discussion and Conclusion. When testing the induction heating principle on stainless steels of different compositions, it has been concluded that for the efficiency of heating the container, there is required a ferromagnetic steel pad welded on top of the main container made of food-grade stainless steel. The developed system of inductors made it possible to create a prototype unit with two heating zones depending on the volume of processed raw materials that is important for small farms engaged in processing milk and producing milk-based products.

Publisher

National Research Mordovia State University MRSU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3