Investigation of Field and Energy in a Weakly-Conducting Optical Fiber with an Arbitrary Degree of Refractive Index Profile

Author:

Gladkikh Vyacheslav A.1ORCID,Vlasenko Victor D.1ORCID

Affiliation:

1. Computer Center of the Far Eastern Branch of the Russian Academy of Sciences

Abstract

Introduction. We consider a weakly conductive gradient fiber in the single-mode regime and solve the equation for the electric field in the core of this fiber in a general form in the first approximation. The aim of this study is to study the field and energy in the core of a weakly conductive gradient fiber without taking into account the polarization in the single-mode regime in the case of a power-law (generally) refractive index profile. Materials and Methods. From Maxwell’s equations for dielectric media, there was derived an equation for the field in a fiber with gradient refractive index profile. Making the appropriate substitutions, replacing the zero-order Bessel function with a Gaussian function, and making the necessary approximation of the resulting equation, we arrive at an equation that we solve by the Wentzel – Kramers – Brillouin method and obtain analytical expressions for the field and energy inside waveguide for an arbitrary degree of the refractive index. Results. There was obtained a solution of the equation for the field in fiber with a powerlaw refractive index profile. Numerical calculations were carried out. A graph of the dependence of a dimensionless quantity – “normalized” energy – on the waveguide parameter for the first five powers of the profile (n = 1, 2, 3, 4, 5) was plotted. Discussion and Conclusion. It is shown that the energy increases faster for the profile with n = 1, and after this value, the energy for the profile with n = 1 increases sharply, and for n > 1, the energy growth decreases with increasing n. The results obtained in this work can be used for creating an energy-efficient core, for carrying out a possible analysis of information transmission, and for designing waveguides taking into account specific applications.

Publisher

National Research Mordovia State University MRSU

Subject

General Medicine

Reference4 articles.

1. Introduction. We consider a weakly conductive gradient fiber in the single-mode regime and solve the equation for the electric field in the core of this fiber in a general form in the first approximation. The aim of this study is to study the field and energy in the core of a weakly conductive gradient fiber without taking into account the polarization in the single-mode regime in the case of a power-law (generally) refractive index profile.

2. Materials and Methods. From Maxwell’s equations for dielectric media, there was derived an equation for the field in a fiber with gradient refractive index profile. Making the appropriate substitutions, replacing the zero-order Bessel function with a Gaussian function, and making the necessary approximation of the resulting equation, we arrive at an equation that we solve by the Wentzel – Kramers – Brillouin method and obtain analytical expressions for the field and energy inside waveguide for an arbitrary degree of the refractive index.

3. Results. There was obtained a solution of the equation for the field in fiber with a powerlaw refractive index profile. Numerical calculations were carried out. A graph of the dependence of a dimensionless quantity – “normalized” energy – on the waveguide parameter for the first five powers of the profile (n = 1, 2, 3, 4, 5) was plotted.

4. Discussion and Conclusion. It is shown that the energy increases faster for the profile with n = 1, and after this value, the energy for the profile with n = 1 increases sharply, and for n > 1, the energy growth decreases with increasing n. The results obtained in this work can be used for creating an energy-efficient core, for carrying out a possible analysis of information transmission, and for designing waveguides taking into account specific applications.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3