Stabilization distance bounds from link Floer homology

Author:

Juhász András1,Zemke Ian2ORCID

Affiliation:

1. Mathematical Institute University of Oxford Andrew Wiles Building Radcliffe Observatory Quarter Oxford UK

2. Department of Mathematics Princeton University Princeton New Jersey USA

Abstract

AbstractWe consider the set of connected surfaces in the 4‐ball with boundary a fixed knot in the 3‐sphere. We define the stabilization distance between two surfaces as the minimal such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most . Similarly, we consider a double‐point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double‐point distance. We compute our invariants for some pairs of deform‐spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice‐disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non‐0‐cobordant slice disks.

Funder

National Science Foundation

European Research Council

Publisher

Wiley

Reference59 articles.

1. Knot Floer homology and the unknotting number

2. Knotted surfaces in 4-manifolds and stabilizations

3. Classifying 1-handles attached to knotted surfaces

4. I.Dai A.Mallick andM.Stoffregen Equivariant knots and knot Floer homology https://arxiv.org/abs/2201.01875.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3