Brieskorn spheres, cyclic group actions and the Milnor conjecture

Author:

Baraglia David1,Hekmati Pedram2

Affiliation:

1. School of Computer and Mathematical Sciences The University of Adelaide Adelaide SA Australia

2. Department of Mathematics The University of Auckland Auckland New Zealand

Abstract

AbstractIn this paper we further develop the theory of equivariant Seiberg–Witten–Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain a number of applications. First, we show that the knot concordance invariants defined by the first author satisfy for torus knots, whenever is a prime not dividing . Since is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture. Second, we prove that a free cyclic group action on a Brieskorn homology 3‐sphere does not extend smoothly to any homology 4‐ball bounding . In the case of a non‐free cyclic group action of prime order, we prove that if the rank of is greater than times the rank of , then the ‐action on does not extend smoothly to any homology 4‐ball bounding . Third, we prove that for all but finitely many primes a similar non‐extension result holds in the case that the bounding 4‐manifold has positive‐definite intersection form. Finally, we also prove non‐extension results for equivariant connected sums of Brieskorn homology spheres.

Publisher

Wiley

Reference41 articles.

1. Brieskorn spheres bounding rational balls

2. Cyclic group actions on contractible 4–manifolds

3. CYCLIC BRANCHED COVERINGS OF BRIESKORN SPHERES BOUNDING ACYCLIC 4-MANIFOLDS

4. Knot concordance invariants from Seiberg–Witten theory and slice genus bounds in 4‐manifolds;Baraglia D.;Internat. J. Math.,2022

5. Equivariant Seiberg–Witten–Floer cohomology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite group actions on 4-manifolds and equivariant bundles;Proceedings of Symposia in Pure Mathematics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3