Author:
Harvey David,Massierer Maike,Sutherland Andrew V.
Abstract
Let$C/\mathbf{Q}$be a curve of genus three, given as a double cover of a plane conic. Such a curve is hyperelliptic over the algebraic closure of$\mathbf{Q}$, but may not have a hyperelliptic model of the usual form over$\mathbf{Q}$. We describe an algorithm that computes the local zeta functions of$C$at all odd primes of good reduction up to a prescribed bound$N$. The algorithm relies on an adaptation of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report on an implementation and compare its performance to previous algorithms for the ordinary hyperelliptic case.
Subject
Computational Theory and Mathematics,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献