Author:
Boyd David W.,Martin Greg,Thom Mark
Abstract
AbstractThe discriminant of a trinomial of the form $x^{n}\pm \,x^{m}\pm \,1$ has the form $\pm n^{n}\pm (n-m)^{n-m}m^{m}$ if $n$ and $m$ are relatively prime. We investigate when these discriminants have nontrivial square factors. We explain various unlikely-seeming parametric families of square factors of these discriminant values: for example, when $n$ is congruent to 2 (mod 6) we have that $((n^{2}-n+1)/3)^{2}$ always divides $n^{n}-(n-1)^{n-1}$. In addition, we discover many other square factors of these discriminants that do not fit into these parametric families. The set of primes whose squares can divide these sporadic values as $n$ varies seems to be independent of $m$, and this set can be seen as a generalization of the Wieferich primes, those primes $p$ such that $2^{p}$ is congruent to 2 (mod $p^{2}$). We provide heuristics for the density of these sporadic primes and the density of squarefree values of these trinomial discriminants.
Subject
Computational Theory and Mathematics,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献