Deterministic polynomial factoring and association schemes

Author:

Arora Manuel,Ivanyos Gábor,Karpinski Marek,Saxena Nitin

Abstract

AbstractThe problem of finding a nontrivial factor of a polynomial$f(x)$over a finite field${\mathbb{F}}_q$has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the art by focusing on prime degree polynomials; let$n$be the degree. If$(n-1)$has a ‘large’$r$-smooth divisor$s$, then we find a nontrivial factor of$f(x)$in deterministic$\mbox{poly}(n^r,\log q)$time, assuming GRH and that$s=\Omega (\sqrt{n/2^r})$. Thus, for$r=O(1)$our algorithm is polynomial time. Further, for$r=\Omega (\log \log n)$there are infinitely many prime degrees$n$for which our algorithm is applicable and better than the best known, assuming GRH. Our methods build on the algebraic-combinatorial framework of$m$-schemes initiated by Ivanyos, Karpinski and Saxena (ISSAC 2009). We show that the$m$-scheme on$n$points, implicitly appearing in our factoring algorithm, has an exceptional structure, leading us to the improved time complexity. Our structure theorem proves the existence of small intersection numbers in any association scheme that has many relations, and roughly equal valencies and indistinguishing numbers.

Publisher

Wiley

Subject

Computational Theory and Mathematics,General Mathematics

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deterministic polynomial factoring over finite fields: A uniform approach viaP-schemes;Journal of Symbolic Computation;2020-01

2. Irreducibility and Deterministic r-th Root Finding over Finite Fields;Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation;2017-07-23

3. Deterministic root finding over finite fields using Graeffe transforms;Applicable Algebra in Engineering, Communication and Computing;2015-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3