Abstract
AbstractA reduction theory is developed for binary forms (homogeneous polynomials) of degrees three and four with integer coefficients. The resulting coefficient bounds simplify and improve on those in the literature, particularly in the case of negative discriminant. Applications include systematic enumeration of cubic number fields, and 2-descent on elliptic curves defined over the set of rational numbers. Remarks are given concerning the extension of these results to forms defined over number fields.
Subject
Computational Theory and Mathematics,General Mathematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献