Abstract
The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.
Subject
Computational Theory and Mathematics,General Mathematics
Reference13 articles.
1. Sur les points rationnels des courbes algébriques de genre supérieur à l’unité;Chabauty;C. R. Acad. Sci. Paris,1941
2. Effective Chabauty
3. Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology;Kedlaya;J. Ramanujan Math. Soc.,2001
4. 2. J. S. Balakrishnan , A. Besser and J. S. Müller , ‘Quadratic Chabauty: $p$ -adic height pairings and integral points on hyperelliptic curves’, J. reine angew. Math., to appear.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explicit Vologodsky Integration for Hyperelliptic Curves;MATH COMPUT;2021-12-17
2. OUP accepted manuscript;International Mathematics Research Notices;2021
3. Square Root Time Coleman Integration on Superelliptic Curves;Arithmetic Geometry, Number Theory, and Computation;2021
4. p-adic Integration on Bad Reduction Hyperelliptic Curves;International Mathematics Research Notices;2020-11-03
5. Explicit Coleman integration for curves;Mathematics of Computation;2020-05-22