Author:
Brown Gavin,Kasprzyk Alexander M.
Abstract
AbstractWe exhibit seven linear codes exceeding the current best known minimum distance $d$ for their dimension $k$ and block length $n$. Each code is defined over ${ \mathbb{F} }_{8} $, and their invariants $[n, k, d] $ are given by $[49, 13, 27] $, $[49, 14, 26] $, $[49, 16, 24] $, $[49, 17, 23] $, $[49, 19, 21] $, $[49, 25, 16] $ and $[49, 26, 15] $. Our method includes an exhaustive search of all monomial evaluation codes generated by points in the $[0, 5] \times [0, 5] $ lattice square.
Subject
Computational Theory and Mathematics,General Mathematics
Reference13 articles.
1. 1. J. E. Amaya , A. J. Harry and B. M. Vega , ‘A systematic census of generalized toric codes over ${ \mathbb{F} }_{4} $ , ${ \mathbb{F} }_{5} $ and ${ \mathbb{F} }_{16} $ ’, Technical report, MSRI-UP, July 2009, http://www.msri.org/web/msri/scientific/workshops/show/-/event/Wm491.
2. On the structure of generalized toric codes
3. 8. E. Guerrini , E. Bellini and M. Sala , ‘Some bounds on the size of codes’, Preprint, 2012, arXiv:1206.6006v2 [cs.IT].
4. On toric codes and multivariate Vandermonde matrices
5. 4. G. Brown and A. M. Kasprzyk , 2005–2013, ‘The graded ring database’, http://grdb.lboro.ac.uk/.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献