A Recursive Method for Computing Zeta Functions of Varieties

Author:

Lauder Alan G. B.

Abstract

AbstractWe present an algorithm that reduces the problem of calculating a numerical approximation to the action of absolute Frobenius on the middle-dimensional rigid cohomology of a smooth projective variety over a finite held, to that of performing the same calculation for a smooth hyperplane section. When combined with standard geometric techniques, this yields a method for computing zeta functions which proceeds ‘by induction on the dimension’. The ‘inductive step’ combines previous work of the author on the deformation of Frobenius with a higher rank generalisation of Kedlaya's algorithm. The analysis of the loss of precision during the algorithm uses a deep theorem of Christol and Dwork on p-adic solutions to differential systems at regular singular points. We apply our algorithm to compute the zeta functions of compactifications of certain surfaces which are double covers of the affine plane.

Publisher

Wiley

Subject

Computational Theory and Mathematics,General Mathematics

Reference43 articles.

1. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology;Kedlaya;J. RamanujanMath. Soc.,2001

2. Nilpotent connections and the monodromy theorem: Applications of a result of turrittin

3. Fourier transforms and p-adic “Weil II”’;Kedlaya;Compositio Math.

4. 22. Katz N. , ‘Travaux de Dwork’, Séminaire Bourbaki 24,409 (1971/1972) 167–200.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An effective description of the roots of bivariates mod pk and the related Igusa’s local zeta function;Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation;2023-07-24

2. Point counting on K3 surfaces and an application concerning real and complex multiplication;LMS Journal of Computation and Mathematics;2016

3. Computing zeta functions of arithmetic schemes;Proceedings of the London Mathematical Society;2015-11-29

4. Improvements to the Deformation Method for Counting Points on Smooth Projective Hypersurfaces;Foundations of Computational Mathematics;2015-01-06

5. Computing zeta functions of nondegenerate hypersurfaces with few monomials;LMS Journal of Computation and Mathematics;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3