Furstenberg entropy of intersectional invariant random subgroups

Author:

Hartman Yair,Yadin Ariel

Abstract

We study the Furstenberg-entropy realization problem for stationary actions. It is shown that for finitely supported probability measures on free groups, any a priori possible entropy value can be realized as the entropy of an ergodic stationary action. This generalizes results of Bowen. The stationary actions we construct arise via invariant random subgroups (IRSs), based on ideas of Bowen and Kaimanovich. We provide a general framework for constructing a continuum of ergodic IRSs for a discrete group under some algebraic conditions, which gives a continuum of entropy values. Our tools apply, for example, for certain extensions of the group of finitely supported permutations and lamplighter groups, hence establishing full realization results for these groups. For the free group, we construct the IRSs via a geometric construction of subgroups, by describing their Schreier graphs. The analysis of the entropy of these spaces is obtained by studying the random walk on the appropriate Schreier graphs.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference28 articles.

1. On the growth of $L^2$-invariants for sequences of lattices in Lie groups

2. [BLT16] P. Burton , M. Lupini and O. Tamuz , Weak equivalence of stationary actions and the entropy realization problem, Preprint (2016), arXiv:1603.05013.

3. Evolving sets, mixing and heat kernel bounds

4. Isopérimétrie pour les groupes et les variétés

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kudō-continuity of conditional entropies;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-08-01

2. Faithful invariant random subgroups in acylindrically hyperbolic groups;Bulletin of the London Mathematical Society;2023-02-27

3. Schreier graphs of spinal groups;International Journal of Algebra and Computation;2021-06-18

4. Co-induction and invariant random subgroups;Groups, Geometry, and Dynamics;2019-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3