Abstract
Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.
Subject
Algebra and Number Theory
Reference34 articles.
1. Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands
2. Endoscopic classification of representations of quasi-split unitary groups;Mok;Mem. Amer. Math. Soc.,2015
3. [LS16] J. Lust and S. Stevens , On depth zero L-packets for classical groups, Preprint (2016), arXiv:1611.08421.
4. A functoriality principle for blocks of
𝑝-adic linear groups
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献