Author:
Krishna Amalendu,Park Jinhyun
Abstract
We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are derived.
Subject
Algebra and Number Theory
Reference52 articles.
1. A moving lemma for cycles with very ample modulus;Krishna;Ann. Sc. Norm. Super. Pisa Cl. Sci,2017
2. The big de Rham–Witt complex
3. Milnor 𝐾-theory of local rings with finite residue fields
4. The Gersten conjecture for Milnor K-theory
5. Éléments de Géométrie Algébrique IV, Étude locale des schémas et des morphismes de schémas, (Seconde Partie);Grothendieck;Publ. Math. Inst. Hautes Études Sci,1965
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献