Abstract
We generalize Siegel’s theorem on integral points on affine curves to integral points of bounded degree, giving a complete characterization of affine curves with infinitely many integral points of degree $d$ or less over some number field. Generalizing Picard’s theorem, we prove an analogous result characterizing complex affine curves admitting a nonconstant holomorphic map from a degree $d$ (or less) analytic cover of $\mathbb{C}$.
Subject
Algebra and Number Theory
Reference34 articles.
1. Integral points on subvarieties of semiabelian varieties, I
2. A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing
3. [VdPS82] A. J. van der Poorten and H. P. Schlickewei , The growth condition for recurrence sequences, Macquarie University Math. Rep. 82-0041 (1982).
4. Über einege Anwendungen Diophantischer Approximationen;Siegel;Abh. Preuss. Akad. Wiss. Phys. Math. Kl.,1929
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献