Author:
Poonen Bjorn,Testa Damiano,van Luijk Ronald
Abstract
Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension $p$ cycles for any $p$.
Subject
Algebra and Number Theory
Reference47 articles.
1. An elliptic K3 surface associated to Heron triangles
2. Relations between K2 and Galois cohomology
3. On elliptic modular surfaces
4. [SGA41/2] P. Deligne , Cohomologie étale, Séminaire de Géométrie Algébrique du Bois-Marie ( $\mathit{SGA}~\mathit{4}{\textstyle \frac{1}{2}}$ ), Lecture Notes in Mathematics, vol. 569 (Springer, Berlin 1977); Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier; MR 0463174 (57 #3132).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献