Abstract
We prove that any hyper-Kähler sixfold $K$ of generalized Kummer type has a naturally associated manifold $Y_K$ of $\mathrm {K}3^{[3]}$ type. It is obtained as crepant resolution of the quotient of $K$ by a group of symplectic involutions acting trivially on its second cohomology. When $K$ is projective, the variety $Y_K$ is birational to a moduli space of stable sheaves on a uniquely determined projective $\mathrm {K}3$ surface $S_K$. As an application of this construction we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces $S_K$, producing infinitely many new families of $\mathrm {K}3$ surfaces of general Picard rank $16$ satisfying the Kuga–Satake Hodge conjecture.
Reference55 articles.
1. Footnotes to papers of O’Grady and Markman
2. Every rational Hodge isometry between two K3K3 surfaces is algebraic
3. The weight-two Hodge structure of moduli spaces of sheaves on a $K3$ surface;O'Grady;J. Algebraic Geom,1997