Abstract
In this paper we prove a conjecture relating the Whittaker function of a certain generating function with the Whittaker function of the theta representation $\unicode[STIX]{x1D6E9}_{n}^{(n)}$. This enables us to establish that a certain global integral is factorizable and hence deduce the meromorphic continuation of the standard partial $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$. In fact we prove that this partial $L$ function has at most a simple pole at $s=1$. Here, $\unicode[STIX]{x1D70B}^{(n)}$ is a genuine irreducible cuspidal representation of the group $\text{GL}_{r}^{(n)}(\mathbf{A})$.
Subject
Algebra and Number Theory
Reference12 articles.
1. A new way to get Euler products;Piatetski-Shapiro;J. Reine Angew. Math.,1988
2. A cubic analogue of the cuspidal theta representations;Patterson;J. Math. Pures Appl. (9),1984
3. On Shimura’s correspondence
4. Symmetric Square L-Functions on GL(r)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献