Author:
Borman Matthew Strom,McLean Mark
Abstract
AbstractThe width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian$Q$by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian$L$with respect to a Hamiltonian whose chords correspond to geodesic paths in$Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian$Q$admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of$Q$is bounded above by four times its displacement energy.
Subject
Algebra and Number Theory
Reference87 articles.
1. On the Floer homology of cotangent bundles
2. A maximal relative symplectic packing construction
3. From Symplectic Packing to Algebraic Geometry and Back
4. [Alb08] P. Albers , A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, Art. ID rnm 134, 56pp (2008).
5. Symplectic rigidity: Lagrangian submanifolds
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献