Abstract
We prove that for any prime number $p\geqslant 3$, there exists a positive number $\unicode[STIX]{x1D705}_{p}$ such that $\unicode[STIX]{x1D712}({\mathcal{O}}_{X})\geqslant \unicode[STIX]{x1D705}_{p}c_{1}^{2}$ holds true for all algebraic surfaces $X$ of general type in characteristic $p$. In particular, $\unicode[STIX]{x1D712}({\mathcal{O}}_{X})>0$. This answers a question of Shepherd-Barron when $p\geqslant 3$.
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integral Models and Torsors of Inseparable Forms of Ga;Michigan Mathematical Journal;2022-08-01
2. Surfaces on the Severi line in positive characteristic;Transactions of the American Mathematical Society;2022-06-30
3. Slope inequalities and a Miyaoka–Yau type inequality;Journal of the European Mathematical Society;2021-12-08