Author:
Ivanov Sergei O.,Mikhailov Roman
Abstract
For a prime $p$, let $\hat{F}_{p}$ be a finitely generated free pro-$p$-group of rank at least $2$. We show that the second discrete homology group $H_{2}(\hat{F}_{p},\mathbb{Z}/p)$ is an uncountable $\mathbb{Z}/p$-vector space. This answers a problem of A. K. Bousfield.
Subject
Algebra and Number Theory
Reference13 articles.
1. [IM17] S. O. Ivanov and R. Mikhailov , A finite $\mathbb{Q}$ -bad space, Preprint (2017), arXiv:1708.00282.
2. On a problem of Bousfield for metabelian groups
3. The Artin-Rees property and homology
4. [Klo16] B. Klopsch , Abstract quotients of profinite groups, after Nikolov and Segal, Preprint (2016), arXiv:1601.00343.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献