Author:
Kisilevsky Hershy,Sonn Jack
Abstract
AbstractLet ℓ be a prime number. It is not known whether every finite ℓ-group of rank n≥1 can be realized as a Galois group over ${\Bbb Q}$ with no more than n ramified primes. We prove that this can be done for the (minimal) family of finite ℓ-groups which contains all the cyclic groups of ℓ-power order and is closed under direct products, (regular) wreath products and rank-preserving homomorphic images. This family contains the Sylow ℓ-subgroups of the symmetric groups and of the classical groups over finite fields of characteristic not ℓ. On the other hand, it does not contain all finite ℓ-groups.
Subject
Algebra and Number Theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献