On the minimal ramification problem for ℓ-groups

Author:

Kisilevsky Hershy,Sonn Jack

Abstract

AbstractLet be a prime number. It is not known whether every finite -group of rank n≥1 can be realized as a Galois group over ${\Bbb Q}$ with no more than n ramified primes. We prove that this can be done for the (minimal) family of finite -groups which contains all the cyclic groups of -power order and is closed under direct products, (regular) wreath products and rank-preserving homomorphic images. This family contains the Sylow -subgroups of the symmetric groups and of the classical groups over finite fields of characteristic not . On the other hand, it does not contain all finite -groups.

Publisher

Wiley

Subject

Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-step nilpotent extensions are not anabelian;Mathematische Zeitschrift;2024-01-19

2. The Minimal Ramification Problem for Rational Function Fields over Finite Fields;International Mathematics Research Notices;2023-02-06

3. Ramification in the Inverse Galois Problem;Journal of Number Theory;2021-03

4. SIEVES AND THE MINIMAL RAMIFICATION PROBLEM;Journal of the Institute of Mathematics of Jussieu;2018-06-18

5. Decomposition types in minimally tamely ramified extensions of $$\mathbb {Q}$$ Q;Research in Number Theory;2017-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3