Abstract
AbstractWe give bounds for the Betti numbers of projective algebraic varieties in terms of their classes (degrees of dual varieties of successive hyperplane sections). We also give bounds for classes in terms of ramification volumes (mixed ramification degrees), sectional genus and, eventually, in terms of dimension, codimension and degree. For varieties whose degree is large with respect to codimension, we give sharp bounds for the above invariants and classify the varieties on the boundary, thus obtaining a generalization of Castelnuovo’s theory for curves to varieties of higher dimension.
Subject
Algebra and Number Theory
Reference55 articles.
1. Projective invariants of quadratic embeddings
2. Algebraic Geometry
3. Sur les cycles des surfaces algébriques et sur une définition topologique de l’invariant de Zeuthen–Segre;Alexander;Rend. R. Accad. Lincei Cl. Fis. Mat. Nat. (2),1914
4. Asymptotic behaviour of numerical invariants of algebraic varieties
5. Surfaces with zero Lefschetz cycles;Zak;Mat. Zametki,1973
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A lower bound for $$K^2_S$$ K S 2;Rendiconti del Circolo Matematico di Palermo (1952 -);2016-09-30
2. Geometric properties of projective manifolds of small degree;Mathematical Proceedings of the Cambridge Philosophical Society;2015-12-02
3. Numerical invariants of Fano 4-folds;Mathematische Nachrichten;2013-02-19