Author:
Buium Alexandru,Poonen Bjorn
Abstract
AbstractIn the predecessor to this article, we used global equidistribution theorems to prove that given a correspondence between a modular curve and an elliptic curveA, the intersection of any finite-rank subgroup ofAwith the set of CM-points ofAis finite. In this article we apply local methods, involving the theory of arithmetic differential equations, to provequantitativeversions of a similar statement. The new methods apply also to certain infinite-rank subgroups, as well as to the situation where the set of CM-points is replaced by certain isogeny classes of points on the modular curve. Finally, we prove Shimura-curve analogues of these results.
Subject
Algebra and Number Theory
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献