Abstract
A seminal result due to Wall states that if $x$ is normal to a given base $b$, then so is $rx+s$ for any rational numbers $r,s$ with $r\neq 0$. We show that a stronger result is true for normality with respect to the continued fraction expansion. In particular, suppose $a,b,c,d\in \mathbb{Z}$ with $ad-bc\neq 0$. Then if $x$ is continued fraction normal, so is $(ax+b)/(cx+d)$.
Subject
Algebra and Number Theory
Reference24 articles.
1. Normality preserving operations for Cantor series expansions and associated fractals part II;Airey;New York J. Math.,2015
2. A note on normal numbers;Chang;Nanta Math.,1976
3. On continued fractions and finite automata
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献