Optimal cycles in ultrametric dynamics and minimally ramified power series

Author:

Lindahl Karl-Olof,Rivera-Letelier Juan

Abstract

We study ultrametric germs in one variable having an irrationally indifferent fixed point at the origin with a prescribed multiplier. We show that for many values of the multiplier, the cycles in the unit disk of the corresponding monic quadratic polynomial are ‘optimal’ in the following sense: they minimize the distance to the origin among cycles of the same minimal period of normalized germs having an irrationally indifferent fixed point at the origin with the same multiplier. We also give examples of multipliers for which the corresponding quadratic polynomial does not have optimal cycles. In those cases we exhibit a higher-degree polynomial such that all of its cycles are optimal. The proof of these results reveals a connection between the geometric location of periodic points of ultrametric power series and the lower ramification numbers of wildly ramified field automorphisms. We also give an extension of Sen’s theorem on wildly ramified field automorphisms, and a characterization of minimally ramified power series in terms of the iterative residue.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference24 articles.

1. Periodic Points for Good Reduction Maps on Curves

2. Dynamique des fonctions rationnelles sur des corps locaux;Rivera-Letelier;Astérisque,2003

3. Non-Archimedean dynamical systems;Lubin;Compositio Math.,1994

4. Automorphismes des corps locaux de caractéristique p.

5. On Automorphisms of Local Fields

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wildly ramified power series with large multiplicity;Journal of Number Theory;2021-08

2. Ramification of wild automorphisms of Laurent series fields;Proceedings of the American Mathematical Society;2021-01-21

3. Residue fixed point index and wildly ramified power series;Journal of the London Mathematical Society;2020-05-06

4. Geometric location of periodic points of 2-ramified power series;Journal of Mathematical Analysis and Applications;2018-09

5. Characterization of 2-ramified power series;Journal of Number Theory;2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3