Author:
Căldăraru Andrei,Tu Junwu
Abstract
We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.
Subject
Algebra and Number Theory
Reference31 articles.
1. Strong homotopy inner product of an 𝒜∞-algebra;Cho;Int. Math. Res. Not. IMRN,2008
2. The Mukai pairing, I: A categorical approach;Căldăraru;New York J. Math.,2010
3. Mirror Symmetry and Elliptic Curves
4. [Cos05] Costello, K. , The Gromov-Witten potential associated to a TCFT, Preprint (2005), arXiv:math/0509264.
5. The Mukai pairing—II: the Hochschild–Kostant–Rosenberg isomorphism
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Homological mirror symmetry at large volume;Tunisian Journal of Mathematics;2023-04-20