Author:
Brown Aaron,Damjanović Danijela,Zhang Zhiyuan
Abstract
In this paper we study Zimmer's conjecture for $C^{1}$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of an uniform lattice is larger than the dimension of the manifold, then the action factors through a finite group. For lattices in ${\rm SL}(n, {{\mathbb {R}}})$, the dimensional bound is sharp.
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献