Author:
Salter Nick,Tshishiku Bena
Abstract
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
Subject
Algebra and Number Theory